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ABSTRACT

It is important to make automatic speech recognition (ASR)
be inclusive to all users, including those with disorders. Be-
sides model performances, privacy concerns, such as leakage
of medical condition, are severe and harmful for this already
vulnerable population. Hence, developing privacy-preserving
machine learning (PPML) algorithms is important. Recent
node cancellation strategies, while repeatedly showing their
privacy protection efficacy, involve complex multi-branched
structures with manually-tuned thresholds. In this work, we
focus on learning ASR for dementia patients without reveal-
ing their medical condition. Specifically, we present a demen-
tia attribute cancellation strategy (DACS) that trains a single
toggling network in an end-to-end manner to toggle off partic-
ular node dimensions at ASR decoding, concealing a subject’s
dementia status. We show that using DACS can achieve 33%
dementia protection efficacy (DPE), and further configuring
for higher protection efficacy achieves 44% DPE, with only a
slight decrease of 0.1% WER in ASR performance.

Index Terms— Privacy-preserving machine learning
(PPML), automatic speech recognition, node-cancellation,
dementia

1. INTRODUCTION

Emerging focus on Inclusive-AI aims at making AI services
accessible to all users regardless of demographic categories,
health status and other conditions [1]. An example is that
people with disability (POD) are vulnerable populations to
access reliable automatic speech recognition (ASR) [2, 3].
The speech of POD is prone to erroneous transcriptions (due
to low-resourced condition) and unwanted violations of user
privacy, e.g., exposure of medical condition [4]. Recently,
privacy-preserving machine learning (PPML) algorithms are
being actively developed to address privacy concerns. Specif-
ically, learning-based PPML is commonly used to protect
feature embeddings in voice technologies, such as ASR and
speech emotion recognition (SER), from privacy leakage.

Learning-based PPML algorithms can be broadly cate-
gorized into attribute-elimination and node-cancellation ap-
proaches. The attribute-elimination approach often involves
using a gradient reversal layer (GRL) or its variants to elim-

People Utterance Age
Gender

(Male / Female)

Train
AD: 54
HC: 54 1868

AD: 66.8±6.6
HC: 66.4±6.5

AD: 24 / 30
HC: 24 / 30

Test
AD: 24
HC: 24 800

AD: 66.1±7.4
HC: 66.1±7.1

AD: 11 / 13
HC: 11 / 13

Table 1. Demographics of healthy controls (HC) and people
with Alzheimer’s disease (AD) in the dataset we use

inate unwanted attribute’s information in the feature space.
For example, Jalal et al. applied a gradient reversal strategy
to remove speaker identity from ASR embedding [5]. Simi-
lar strategies using a GRL to remove unwanted attributes can
be found in privacy preservation studies [6, 7]. On the other
hand, node-cancellation approach, inspired by disentangle-
ment learning, concentrates attribute-specific information on
particular dimensions and then masks those dimensions con-
taining sensitive information. For example, Huang et al. pro-
posed two variants of align-then-mask strategies for privacy-
aware speech emotion recognition [8, 9], and showed superior
results compared to those of attribute-elimination methods.

However, these recent methods contain major limitations.
Firstly, their use of multi-task learning structures requires in-
dependent networks, to align each of the attribute-specific in-
formation with the node dimensions. This makes the method
undesirably complex when dealing with multiple attributes.
Secondly, the threshold in determining whether to mask a
node has to be set manually. In this work, to address these
limitations, we propose to learn a single toggling network that
can directly toggle off nodes on-the-fly at inference to achieve
privacy protection while maintaining task performances.

In specifics, this study contributes to an end-to-end node-
cancellation learning strategy that protects user medical con-
dition with a single toggling network. This toggling network
takes frame-wise embedding and toggles off those nodes con-
taining dementia status at ASR decoding. We evaluate this ap-
proach on task of ASR for dementia patients, where the main
task is ASR and the sensitive attribute is their disease status.
Our approach exhibits a 44% higher protection efficacy com-
pared to that of the non-protected baseline while maintaining
a competitive ASR performance. Additionally, we show that
our network can be configured to adapt to different demands
for protection efficacy and downstream task performance.
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Fig. 1. The proposed DACS adds a toggling network in ASR to hide dementia status in frame-wise embeddings. The network
is trained with two pairs of adversarial losses and disentangling loss, calculated from the AD-free and ASR-free branches.

2. METHODOLOGY

2.1. Dataset description

ADReSS Challenge dataset [10] containing transcribed speech
recordings of participants during the Boston Diagnostic
Aphasia Examination is used in this study. The average du-
ration of each conversation session is 75.3 seconds, and there
are 78 healthy controls (HC) and 78 people with Alzheimer’s
disease (AD), with their gender and age-matched. This
dataset has been used in developing a wide range of speech
algorithms for dementia diagnoses [11, 12, 13, 14]. In addi-
tion, we segmented each session into utterances and further
removed utterances that were less than 0.1 seconds. We list
the demographics of the dataset used in this study in Table 1.

2.2. The Dementia Attribute Cancellation Strategy

To protect dementia status in ASR, we utilize a toggling net-
work (f ) that takes an ASR embedding (x) and outputs a de-
cision vector (m) to create a masked ASR embedding (x̃) us-
ing the equation: x̃ = mx = xf(x). x̃ is fed into an ASR
decoder for word sequence, containing no dementia status.
The training of the toggling network and ASR is described
below. The choice of hyperparameters follows the original
settings, with an exception of adjusting learning rate for the
toggling network to 10−3 to ensure proper training of ASR
branch (preventing WER from being around 50% to 80%).

2.2.1. The toggling network

The toggling network is a Multilayer Perceptron (MLP) with
Gumbel-Softmax (GS) as output. The use of a GS function
can generate differentiable-categorical outputs [15] with val-
ues approximating zeros and ones, and they can be jointly op-
timized during training. Additionally, to enable the toggling
network to turn off nodes containing dementia status, we uti-
lize a multi-task learning structure including two branches: an
ASR-free branch and an AD-free branch. Each branch gener-
ates a masked ASR embedding to its downstream classifier.

The MLP expands the embedding into a vector with di-
mension 2∗B∗D, where B represents the number of branches
(B = 2), and this vector is rearranged into two matrices
MASR ∈ R2∗D, and MAD ∈ R2∗D. Then, a Gumbel-
Softmax function

dik =
exp(

sik+gi
k

τ )∑2
j=1 exp(

sjk+gj
k

τ )
(1)

takes each row of the matrix sik and outputs corresponding
decisions dik, where 1 <= k <= D and i ∈ {1, 2} repre-
sent the rows and columns of matrices; gik is a random value
sampled from Gumbel Distribution. The output is in the form
of matrices, whose first and second column values are mutu-
ally exclusive (i.e., if di=1

k = 1, then di=2
k will be 0, and vice

versa). Then, we arbitrarily select di=1 as the node-toggling
decision vector, whose values approximating 1 or 0.

Further, we define losses to help cancelling the dementia
state in masked ASR embedding x̃ while retaining ASR per-
formances. For AD-free branch, we define ASR loss Lasr and
reversed AD loss Lad−GRL as an adversarial pair of losses.
On the other hand, in ASR-free branch, we use another adver-
sarial loss pair Lasr−GRL and Lad to create ASR-free embed-
ding. This helps us to disentangle dementia attributes from
AD-free embedding by enlarging the distance between that
and ASR-free embedding. The disentanglement is done with
disentangling loss, Ldisen, implemented using AM-softmax
[16], which penalizes the toggling model for insignificant dif-
ference between AD-free and ASR-free embeddings.

Ldisen =
−1

N

N∑
i=1

log
es(W

T
yi

fi−m)

es(W
T
yi

fi−m) +
∑C

j=1,j ̸=yi
esW

T
j fi

(2)
N is the number of samples; yi represents the classes (ASR-
free or AD-free embeddings), and C is the number of classes
(C=2). WT

yi
fi denotes the projection from input embedding

to a single value, where Wyi
is the weight of a projection layer

of class yi and fi represents the input embedding for sample
i. The scaling factor s and margin m are set to 30.0 and 0.4.

The exact form of Lasr and Lad are CTC loss and recall
loss respectively. Here, instead of using conventional cross
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entropy-based losses for the AD downstream classifier, we
used recall loss whose calculation depends on the recall score
of the classification result. This approach allows us to empha-
size protecting participants with AD labels. Similar to [17],
we define Lrecall as Lrecall = 1− 1

N

∑C
c=1

∑
k:yk=c wcP

yk

k ,
where k : yk = c denotes the samples whose ground truth
label yi is class c. The weight for class c, wc, is a tun-
able hyper-parameter controlling the type of participants to
be protected. We set wc for HC to 0.1 and for AD to 0.9
to enhance the protection on AD participants. P yk

k , the
output probability of class yk, is then calculated to rep-
resent the recall of that class. The other parameters are
C, the number of classes, and N , the number of samples.
Lasr and Lad are computed from the downstream classi-
fiers, and the reversed losses Lasr−GRL and Lad−GRL are
from the downstream classifiers going through a gradient-
reversal layer (GRL). The total loss, Ltoggle, is as follows:
Ltoggle = Lasr + Lasr−GRL + Lad−GRL + Lad + Ldisen.
Our implementation of the toggling network is on github1.

2.2.2. Additional components

The additional component is an AD classifier, serving as
a downstream classifier of the ASR-free branch. It is a
2-layer MLP projecting D-dimensional embeddings to a
2-dimensional vector to calculate Lad and Lad−GRL. To cal-
culate these losses using frame-level ASR embedding when
AD label is given at a session-level, we perform aggregation.
Let uP

n = {x1, x2, ...xT }P be embeddings of an utterance,
where xt is the ASR embedding at timestep t with length T ;
n denotes the n’th utterance of participant P . We calculate
uP
n = 1

T

∑T
t=1 xt, to represent that utterance. Then, the par-

ticipants are up-sampled to be paired with the utterance-level
vectors (un

P , LP )n. This component is pre-trained with the
ASR system and then used for training the toggling network.

2.2.3. ASR architecture

Our ASR system is a data2vec-based end-to-end framework
[18], taking 16kHz waveform of segmented audios as input.
The output dimension, D, of the encoder is 1024. The decoder
serves as the downstream classifier of the AD-free branch.
We take the pretrained data2vec model, and fine-tune on the
ADReSS dataset prior to toggling network training.

3. EXPERIMENTS

3.1. Experimental setup

In this work, we propose a privacy preserving ASR that aims
to delete an user’s dementia condition while maintaining ASR
performance. WER is used to evaluate ASR; 1 - Acc(%), 1
- F1(%), and protection efficacy (DPE) are used to evaluate
the dementia protection. Acc and F1 are the accuracy and

1https://github.com/Victoria-Wei/
dementia-attribute-cancellation-strategy.

f1-score of an AD classifier, which is seen as the attacker’s
AD model. DPE is a metric inspired by vaccine efficacy
evaluation [19], which measures the attributable proportion
of the protection by our method, defined as: DPE = (PRU -
PRP)/PRU × 100%. PRU represents the risk (diagnosis ex-
posure) of unprotected users, whereas PRP represents the risk
of protected users. The risk of unprotected users is calculated
by the true positives of the non-protect baseline model (Fine-
tune) in dementia detection task (TPn) divided by the number
of AD subjects (NAD). Similarly, PRP is calculated by the
true positives of a protected model (TPp) divided by NAD.

3.2. Comparison methods

Multiple methods were implemented to compare with DACS:
Data2Vec [18]: Data2Vec with the pre-training setting
‘data2vec-audio-large-960h’ as an unprotected ASR system.
Fine-tune: fine-tuning the pre-trained Data2Vec model on
the ADReSS dataset.
GRL: using the pair Lasr and Lad−GRL to fine-tune pre-
trained Data2Vec model on the ADReSS dataset, also known
as the attribute-elimination approach for privacy preservation.
Single Toggling: using Lasr and Lad−GRL (AD loss imple-
mented with cross entropy) to optimize a toggling network
sec.2.2.1, and using it for dementia nodes cancellation.
STOA [9]: State-of-the-art node-cancelling strategy in [9].

3.3. Experimental Result

3.3.1. Comparison of DACS with other baseline models

First, the WER of the fine-tuned Data2Vec model is 25.7%,
which is similar to that of the state-of-the-art ASR model re-
ported in this dataset [12] (please refer to the second row in
Table 2). The fine-tuned model significantly improves ASR
performance but also induces medical condition leakage, with
dementia undetected rate of 20.83%. This model is set as
the non-protected baseline for DPE computation (please refer
to sec.3.1). Next, the GRL method improves DPE by 22%
but degrades the ASR performance to 27.2% WER. The sin-
gle toggling method retains the ASR performance (WER of
25.9%) but still lacks any protection (0% DPE). Furthermore,
STOA model has an overall protection (1-Acc.) 2.09 % higher

WER(%) 1-Acc. (%) 1-F1 (%) DPE (%)
Data2Vec [18] 47.5 – – –

Fine-tune 25.7 20.83 21.74 0.00
GRL 27.2 27.08 31.71 22.23

Single Toggling 25.9 25.00 25.00 0.00
STOA [9] 25.9 22.92 22.45 -5.56

DACS 25.8 41.67 45.45 33.33

Table 2. ASR performances in WER(%) and privacy preser-
vation performances in 1-Acc. (%), 1-F1(%) and dementia
protection efficacy (DPE) (%) of different models
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Fig. 2. t-SNE plots of original and toggled ASR embeddings

than that of Fine-tune, though the DPE is negative. The result
implies that the learning strategy of the STOA model is to pro-
tect both HC and AD participants. Hence, when the protec-
tion efficacy is measured only on AD participants (revealing
HC’s condition is less relevant), the DPE decreases to neg-
ative. Lastly, when compared with Fine-tune (baseline), our
proposed DACS improves DPE by 33% (the best-performing
method) while retaining similar ASR performance.

3.3.2. Ablation study

We further perform ablation study to examine the effect of
different components of our framework. First, when we
use cross entropy instead of recall loss, the overall protec-
tion decreases to 29.17% (refer to column: 1-Acc, and the
row GS+Disen-recall in Table 3), and the DPE decreases
to 11%. When we remove disentangling loss (the row GS-
Disen+recall), the overall protection decreases to 22.92%,
and the DPE drops directly to 0%. This result shows that the
toggling network doesn’t enhance protection for dementia
subjects, but protects a few more HC participants. Lastly, if
the disentangling loss is not used and cross entropy is used
instead of recall loss (the row GS-Disen-recall), the overall
performance is just the same as that of the baseline model.
In our ablation study, we observe that both recall and disen-
tangling loss are important to improve the protection efficacy.
Lastly, a t-SNE plot shows that the toggled AD-free embed-
dings shift to upper plane of the y-axis, while the original
ASR embeddings distribute in the lower plane (Fig 2).

3.3.3. Aggressive and passive modes of DACS

With a trained DACS model, the node-toggling decision vec-
tor is determined by the score matrix M processed through

WER(%) 1-Acc. (%) 1-F1 (%) DPE (%)
DACS 25.8 41.67 45.45 33.33

GS+Disen-recall 25.7 29.17 30.43 11.11
GS-Disen+recall 25.8 22.92 23.40 0.00
GS-Disen-recall 25.9 20.83 21.74 0.00

Table 3. ASR performances in WER(%) and privacy preser-
vation performances in 1-Acc. (%), 1-F1(%) and dementia
protection efficacy (DPE) (%) for ablation study

Fig. 3. WERs and DPE in aggressive (when x-axis values are
positive) and passive modes (x-axis values are negative).

the Gumbel-softmax function (sec.2.2.1). In this section, we
illustrate how DACS can be configured into two distinct node-
toggling modes: aggressive and passive. First, we retain the
nodes already toggled on/off by the Gumbel-softmax output.
Next, we calculate ∆s, representing the difference between
si=1
k and si=2

k (si=1
k − si=2

k ), to sort the toggling decisions. A
higher ∆s indicates a higher likelihood of toggling a node on,
while a lower ∆s means otherwise. In the passive toggling
mode, we toggle on the nodes corresponding to the top P%
highest ∆s among the remaining nodes, whilst in our aggres-
sive mode, we further toggle off the nodes corresponding to
P% lowest ∆s.

Fig 3 shows the result of the performance in our tasks
by setting P∈{-80, -60, -40, -20, 0, 20, 40, 60, 80}, where
the negative values of P indicate passive mode. There is a
trend that the protection efficacy improves when more nodes
are toggled off. Specifically, the protection efficacy signifi-
cantly increases to 44% when over 60% additional nodes are
off. In this setting, ASR performance only drops slightly to
WER=25.9%. In passive mode, while the ASR performance
improves with WER≈25.77% (60% additional nodes toggled
on), the protection efficacy decreases to ≈10%. These results
demonstrate that a trained DACS model can be configured to
different demands of the downstream tasks, e.g., in this study
it seems more suitable to configure it in aggressive mode.

4. CONCLUSION

This study presents a novel learning-based PPML strategy.
In this research we propose a DACS that allows ASR ser-
vice provider to protect dementia user’s private medical con-
dition while maintaining ASR performance. Compared to
prior approaches of PPML, the use of a single toggling net-
work is more desirable at ASR decoding. Our results show
that DACS achieves 33% of DPE while maintaining almost
the same ASR performance. We further demonstrate how P%
can be configured to shift the optimal model to focus more on
protection or task performance. In this study, we introduce
a novel learning-based PPML strategy. An immediate direc-
tion is to study the strategy across multiple datasets, including
larger scale of speech data and diverse medical conditions.
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